

A Utility's Experience in Renewables

August 16, 2004

Agenda

- Xcel Energy Background
- Wind
- Biomass
- Other Renewable Resources
- Other Renewable Efforts
- Opportunities
- Conclusions

Xcel Energy Service Territory

Xcel Energy Renewables Owned and Purchases (Capacity)

	2004 Estimate	2010 Estimate
Wind	921 MWs	2141 MWs
Biomass*	95 MWs	200 MWs
Hydro	1530 MWs	1530 MWs
Total	2546 MWs	3871 MWs

^{*} includes waste wood, landfill gas, refuse-derived fuel (RDF)

Xcel Energy

(Fuel Mix-MWHs)

^{*} Includes some renewables

Xcel Energy-NSP

(Fuel Mix-MWHs)

Wind

Wind in the U.S.

Wind

- +900 MWs by end of 2004 (estimate)
- +2100 MWs by 2010 (estimate)
- Cost: < 3¢/Kwh (with subsidies)
 - Good hedge for natural gas
- Intermittent resource
 - Imposes costs to our system
 - Ongoing studies, evaluation

Wind Patterns

TOTAL WIND GENERATION (MWH)

August 3, 2001 through August 16, 2001

Wind Summary

- Xcel Energy is in the top 5 utilities in the country for utilizing wind and the largest in the region.
- Wind can be cost-competitive and is being selected in Xcel Energy's RFP process
 - Wind is a good hedge against natural gas price volatility
 - It provides fuel diversity in our portfolio of resources
- Cannot provide base load power.

Biomass

Biomass

- 95 MWs Existing
- 200 MWs by 2008 (estimate)
- Cost: 8-12¢/Kwh (with subsidies)
- Intermediate/Base Load Resource

Biomass

- Current Biomass Resources
 - Refuse-derived fuel
 - Landfill gas
 - Waste wood
- Future Biomass
 - Turkey litter
 - Waste wood

Biomass Summary

- Costs of new biomass are high
- Technologies still developing
- Expect growth in this area
 - Not all areas rich in wind
 - Agricultural crop opportunities
 - Waste management benefits
 - Economic Development

Other Renewable Resources

- Hydro Electric
 - 30 dams and large hydro purchases
- Solar
 - Renewable Energy Trust
 - RDF, CIP
- Biogas
 - RDF, CIP, Purchases
- Hydrogen
 - CIP, RDF

Other Renewable Efforts

Renewable Development Fund

- \$15.5 million awarded to 17 projects in 2001-2002
- \$25 million awarded in next few weeks
- Funds energy production and research and development projects for renewables
- Annual funding of \$16 million from Xcel Energy
 - \$6 Million for small wind and biogas incentives

Xcel Energy Renewable Development Fund 1st Cycle

- Sample of projects funded:
 - Crown Hydro project
 - Self-erecting wind turbine technology
 - Biomass co-firing with "next generation" technology
 - Department of Commerce solar rebates
 - Pipestone-Jasper school district turbine
 - Science Museum of MN solar project

Pipestone-Jasper

Science Museum of Minnesota

Xcel Energy

Renewable Development Fund

2nd Cycle – Bids Received

IREE

- Institute for Renewable Energy and the Environment University of Minnesota
 - Received ~ \$10 million from RDF funds in 2003
 - Will receive \$10 million over next 5 years from Xcel Energy CIP funds
 - Goal: applied and basic research on renewables, including hydrogen

CIP

- Conservation Improvement Program
 - Targets some funds toward renewable distributed generation (DG)
 - 2002-2004 will spend \$1.1 million on DG
 - Instituting distribution generating technology program: \$450,000 this year, proposed same for next two years

CIP

- Examples:
 - Photovoltaic system at University of Minnesota (\$118,000)
 - Anaerobic digester Northern Star Potato Products (\$308,000)
 - Wastewater/Microturbine with CHP project with Local Government (\$206,000)

University of Minnesota

Northern Star Potato

Local Government

Opportunities

- Lower biomass costs
 - Home grown, closed loop biomass is expensive
 - Improve economics of biomass
 - Example: whole tree burn technology
- Add value to wind
 - "Storage" of wind via hydrogen
 - Wind becomes dispatchable

Opportunities

(continued)

- Investigate combinations of renewable technologies that add value and lower costs
 - Example: wind/biomass technologies
- Investigate opportunities for biofuels to generate electricity
 - Example: Can old coal facilities be retrofitted to burn ethanol to generate electricity?

Conclusions

- Renewables play an important part of our resource portfolio
- Must balance affordability, reliability and environmental aspects
- Xcel Energy is a leader in renewables:
 - Deployment
 - Research and development
- Renewables must be able to complete on an economic basis
 - Wind can be competitive with other resources
 - Other technologies will continue to develop
 - Mandates are not necessary