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Deep learning in medical applications

Deep neural networks and deep learning — Impressive success in later years all
I;li thorugh the worlds of computer vision, image processing, signal processing,
computer science etc.

Challenges with data access in medical applications.
Combining domain knowledge and data learning!

This short talk will focus on two medical applications:

histopathological images, and safer births



Automated analysis of histopathological images of

unrinary bladder cancer

* Digital pathology: scanned whole slide
images (WSI) opens new possibilities
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* Norway in a unique position to exploit

this since first country digitizing all pathology labs,
collecting all WSl in a centralized database

* Automated analysis for:
* Time efficient, objective, reproducible
interpretation

e Region of interest extraction for further
analyses and/or visualization

* Segmentation of cancer areas, and
classification of cancer grade and diagnoses

* Prediction of recurrence and progression risks
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ROl extraction / segmentation 1:

Learning relatively small networks from scratch on few and sparsly labelled data utilizing autoencoders
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Heat Maps — example class

Original image Urothelium tissue
100 %

50 %

— 0%

= Heat maps are post processed by applying a
Gaussian filter kernel with standard deviation
of 6=0.6 to smooth the image.



Heat Maps — example class

Original image Damaged tissue
100 %
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= Heat maps are post processed by applying a
Gaussian filter kernel with standard deviation
of 6=0.6 to smooth the image.



Heat Maps — example class

Original image Stroma tissue
100 %

50 %
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= Heat maps are post processed by applying a
Gaussian filter kernel with standard deviation
of 6=0.6 to smooth the image.



Melanoma : Epidermis segmentation

Epidermis
contour
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Subcutaneous

Tissue \

Malignant
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Epidermis segmentation — U-Net approach
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Method #failed
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CET 0 0.35 0.99 0.47 0.52
GTSA 21 0.73 0.31 0.39 0.42
THM 17 0.69 0.38 0.45 0.47
PASC 0 0.65 0.84 0.68 N/A

Proposed 0 0.89 0.92 0.89 0.89




Safer births

Sensor signals

- Fetal heart rate

- Resucitation signals (ECG, BMV)
- Video of rescucitation
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Video analysis

activity detection system for newborn resuscitation videos

detection processing

Sequential
Neural 5
Network
2 4 6 8 (min)
Sequential — ——— \Ventilation
Neural > - ECG attached
Network B—— Suction
Stimulation
Sequential B P SRR -
Neural 7 5 :
Network 71 # health care | |
‘ 1 providers :
0 i
: i
| e :.____' 1
1
1
1

Tried different things. So far best results using the
pretrained model of YOLOV3, and continue training
on our data




Darknet-53 (53 conv-layers) trained on Imagenet
(feature extractor) 75 conv layers, no fully connected layers.
Conv layer with stride 2 is used for downsampling ( no pooling)

Inputs

(batch_size: 416, 416, 32) . ResNet for improved feature learning (skip connections)
i YO LOV3 NetWOl’k AI‘Ch ItECtU re FPN for utilizing multiscale

Multi-label classification
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FPN: Feature Pyramid Network



Never enough labeled data! Training data (video, augmented, synthetic)




Object detection and tracking using YOLO v3 and post processing




* Extract features from images using Inception_v3
* Input sequence of feature vectors to LSTM network trained on the idividual
activities
* Ex:ventilations or not

Ventilations Not Ventilations

* Augmentation (noise, blur, flip, rotate, crop) TR Sutput Shape Paran F
» 1stm_1 (LSTM) (None, 30, 2048) 33562624
# stm_2 (LSTM) (None, 2048) 33562624
dense_1 (Dense) (None, 512) 1049088
dropout_1 (Dropout) (None, 512) 0
L ' ) L 8 - ‘[ LL] dense_2 (Dense) (None, 2) 1026
Total params: 68,175,362
Trainable params: 68,175,362
Non-trainable params: ©
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Validation acc 90% (using only RGB)
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Working on: i3d (inception structure but for 3d (video) , one for RGB video and one for optical flow stream



Fetal heart rate - Moyo

Possible to predict outcome at earlier
stage?

Detect fetus in need for care?
(Intrauterine intervention / C-section )

Fetal heart rate
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Other ongoing projects on deep learning at UiS

Novel Deep Neural Network Architectures for Fake news Detection in Social Networks and News Media

@ DeepRTP - Deep learning the real-time properties of strongly correlated quantum fields, deeprtp.uis.no

HHE Future Energy Hub — Al and Machine Learning in energy informatics and smart cities

&

Segmentation of myocardium in cardiac magnetic resconanse images

Identifying areas at risk from perfusion CT images after cerebral ischemic stroke

© B

Identification and classification of dementia types from brain MRI



