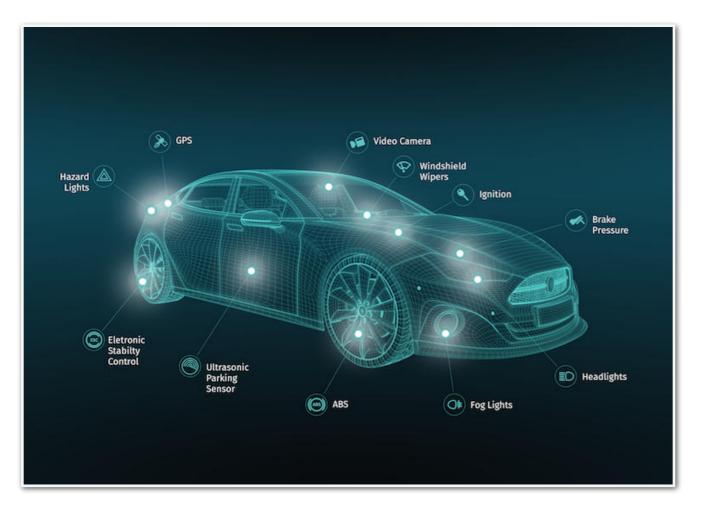
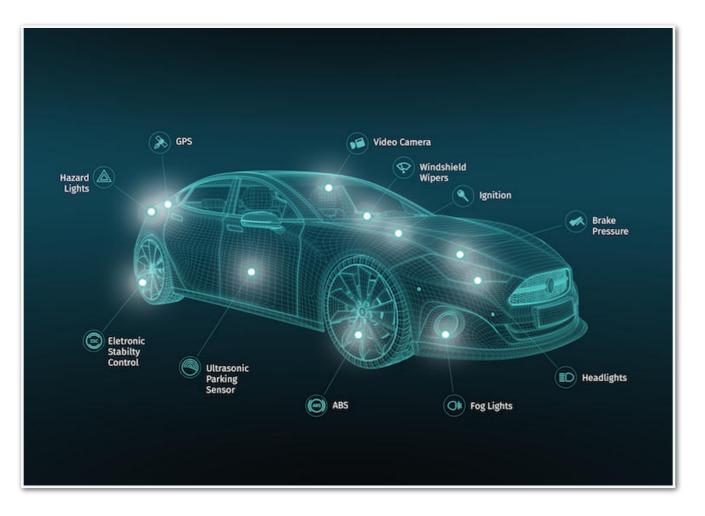
Learning efficient data representation

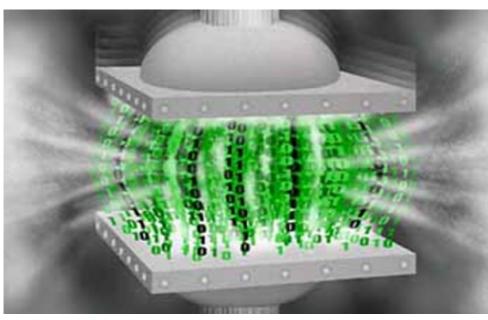
Valeriya Naumova Machine Intelligence Department SimulaMet

> NORA Kick-Off April 01, 2019

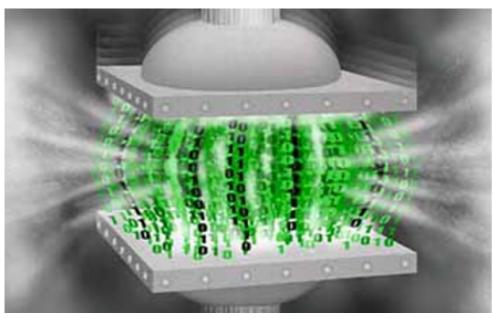
simulamet





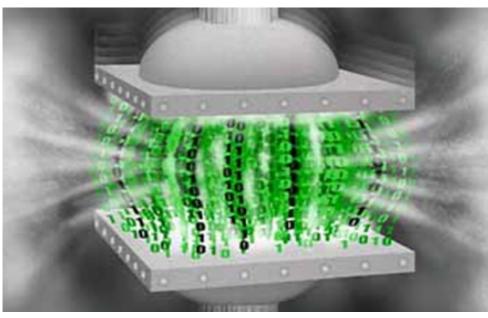


Compression



Compression

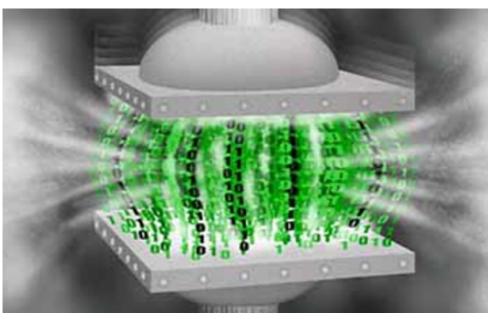
Segmentation



Compression

Segmentation

Prediction



Compression

Segmentation

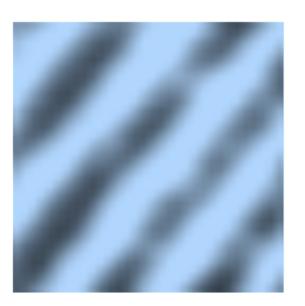
Prediction

Classification

What is sparsity?

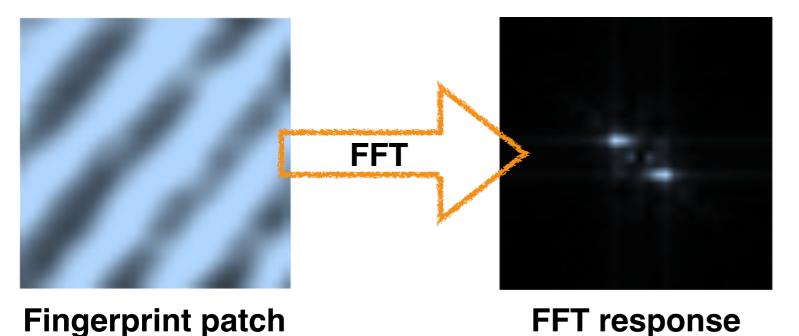
What is sparsity?

Sparsity implies many zeros in a vector or a matrix

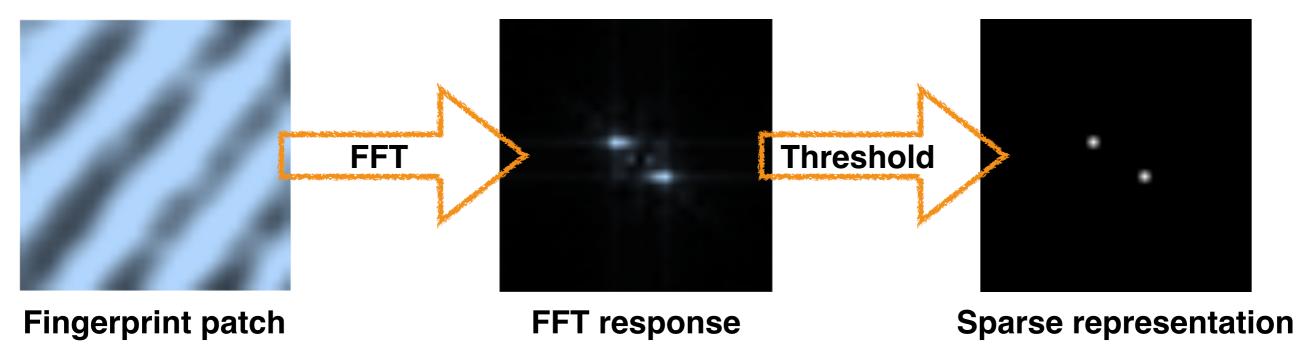


Fingerprint patch

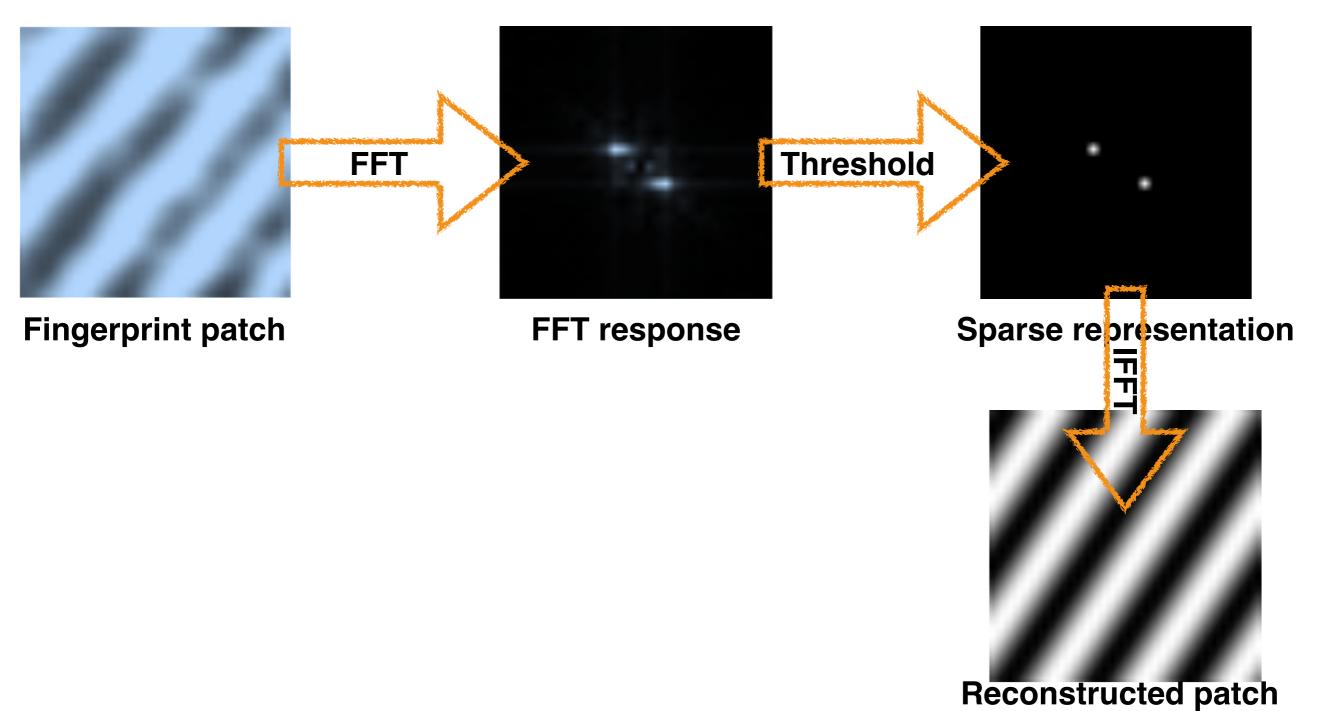
What is sparsity?



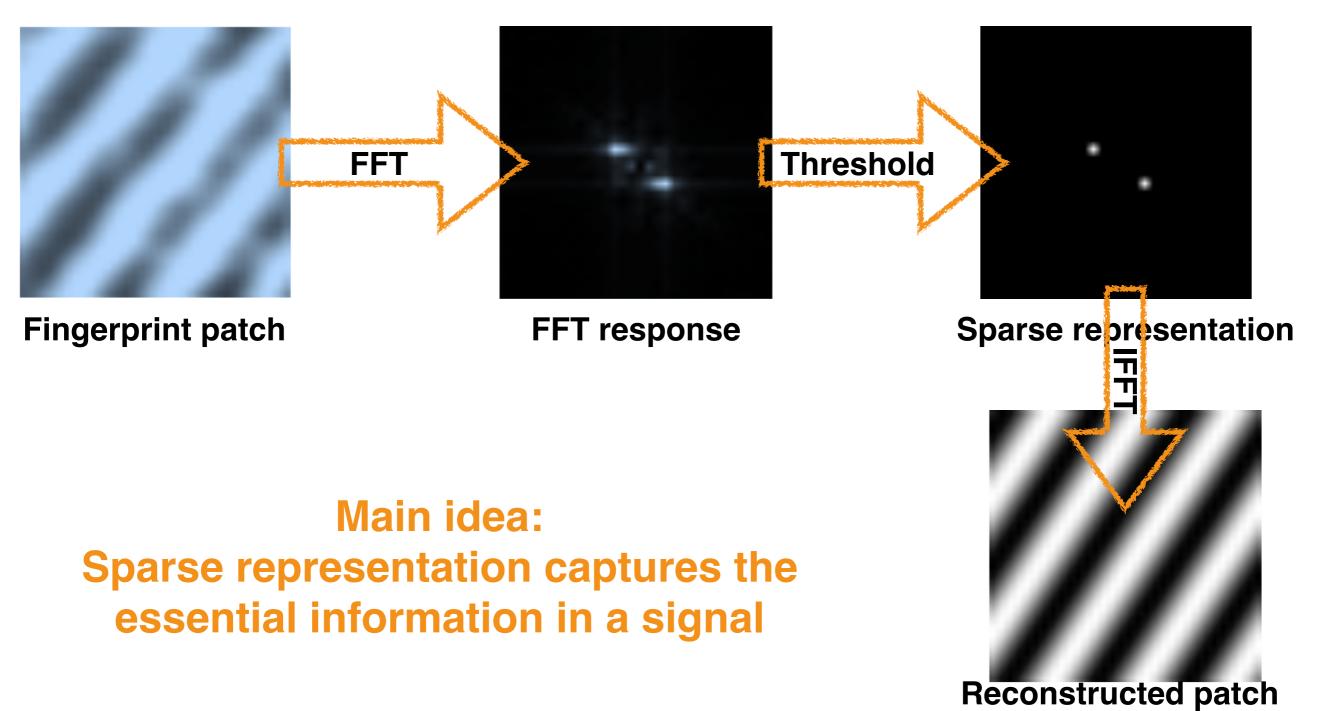
What is sparsity?



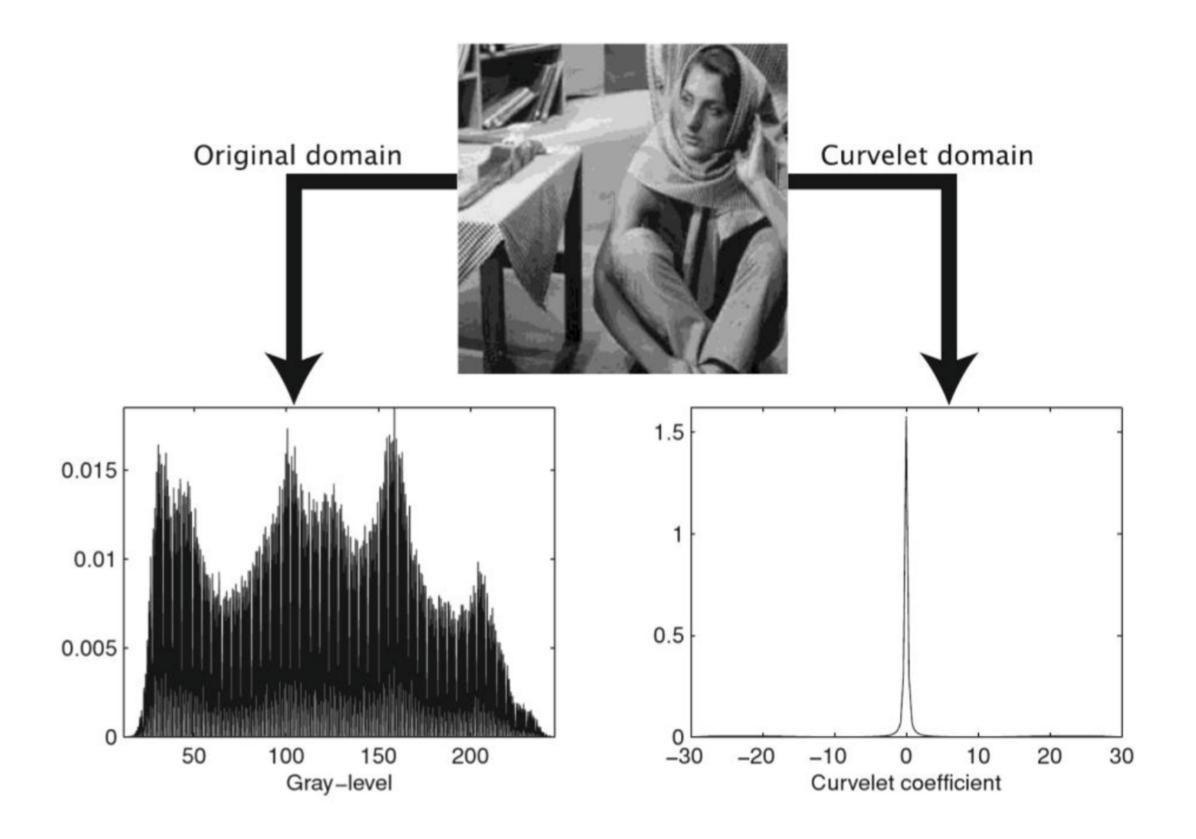
What is sparsity?



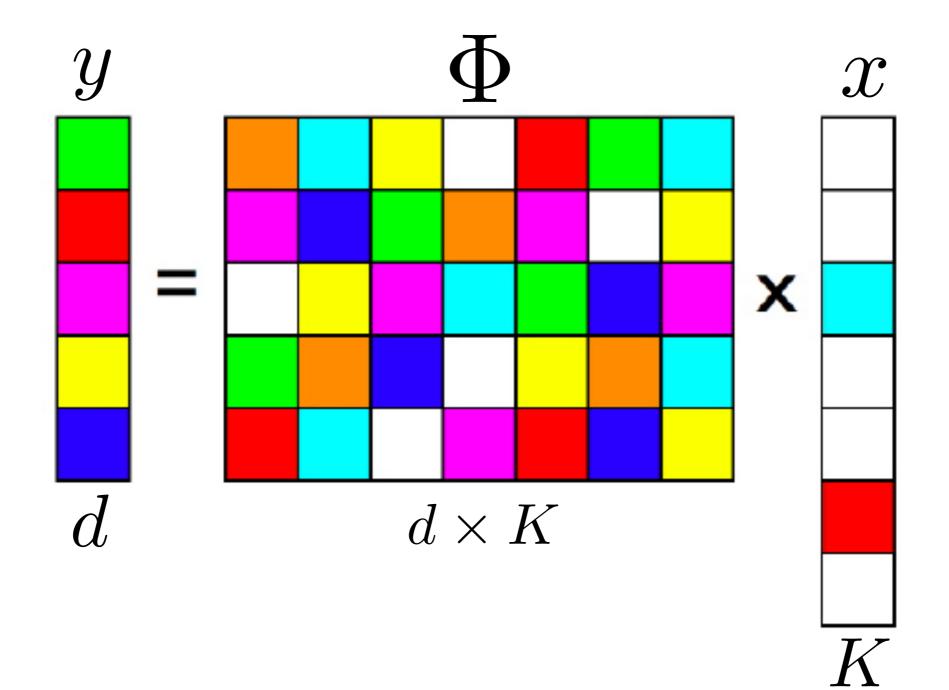
What is sparsity?



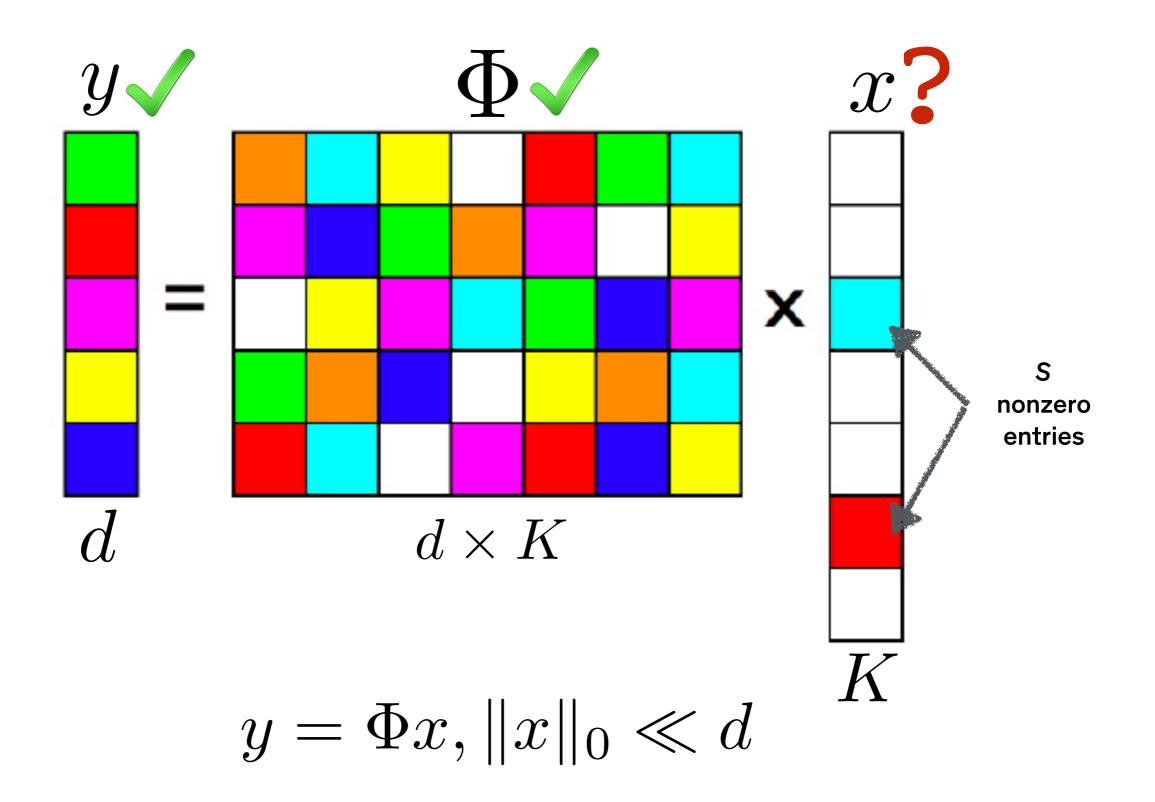
Are images sparse?

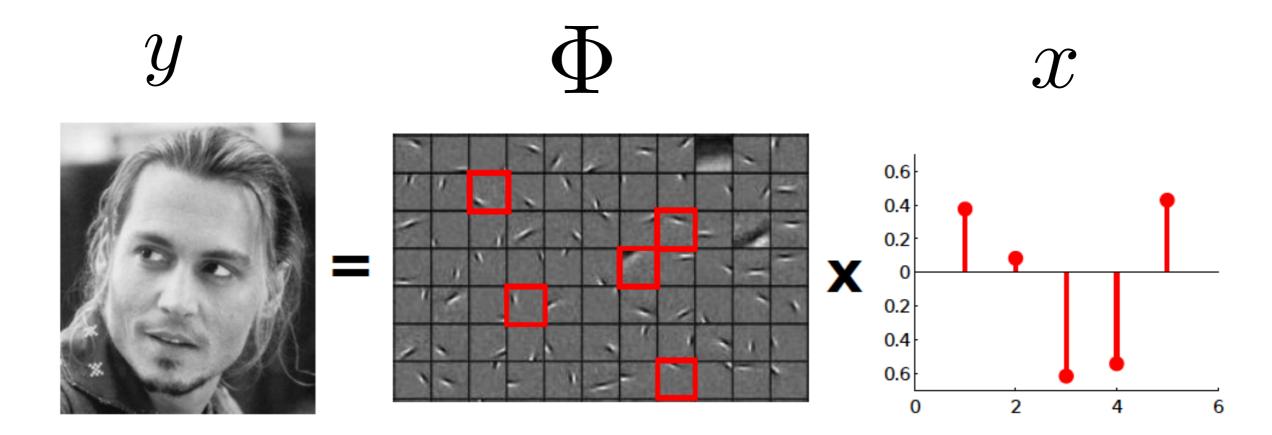


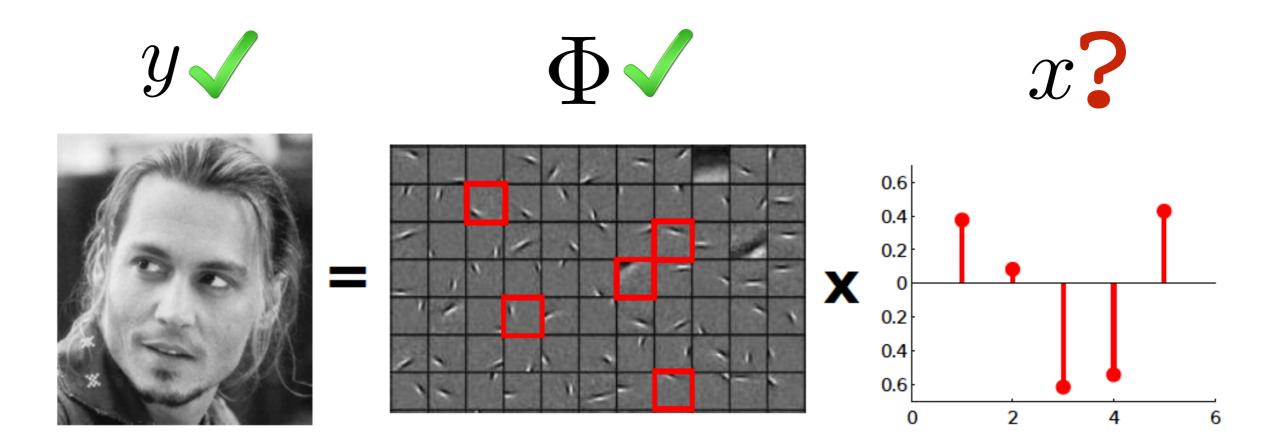
Natural signals are often high-dimensional that can be well represented by a small (sparse) number of elementary signals



Natural signals are often high-dimensional that can be well represented by a small (sparse) number of elementary signals





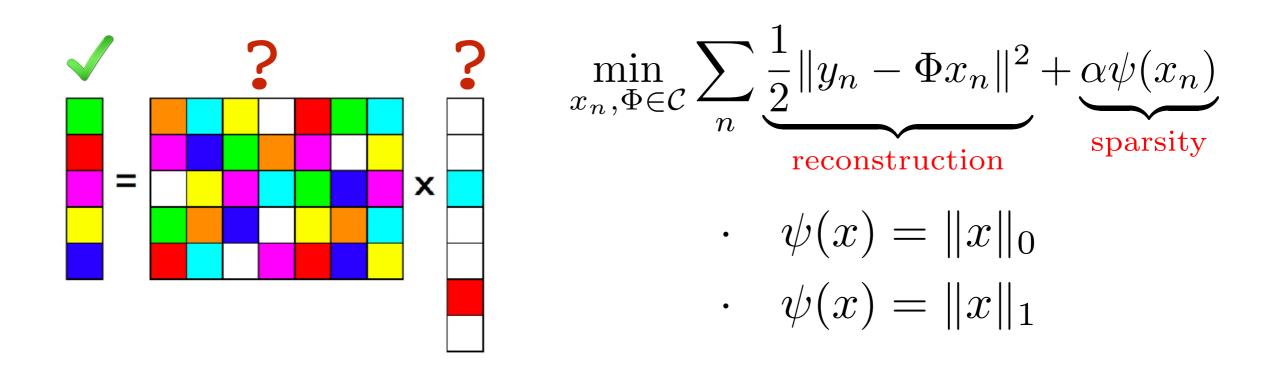


Designed dictionaries: Wavelets, Curvelets, Overcomplete Discrete Cosine Transform, [Haar, 1910], [Zweig, Morlet, Grossman '70s], [Meyer, Mallat, Daubechies, Coifman, Donoho, Candes 80s-today], ...

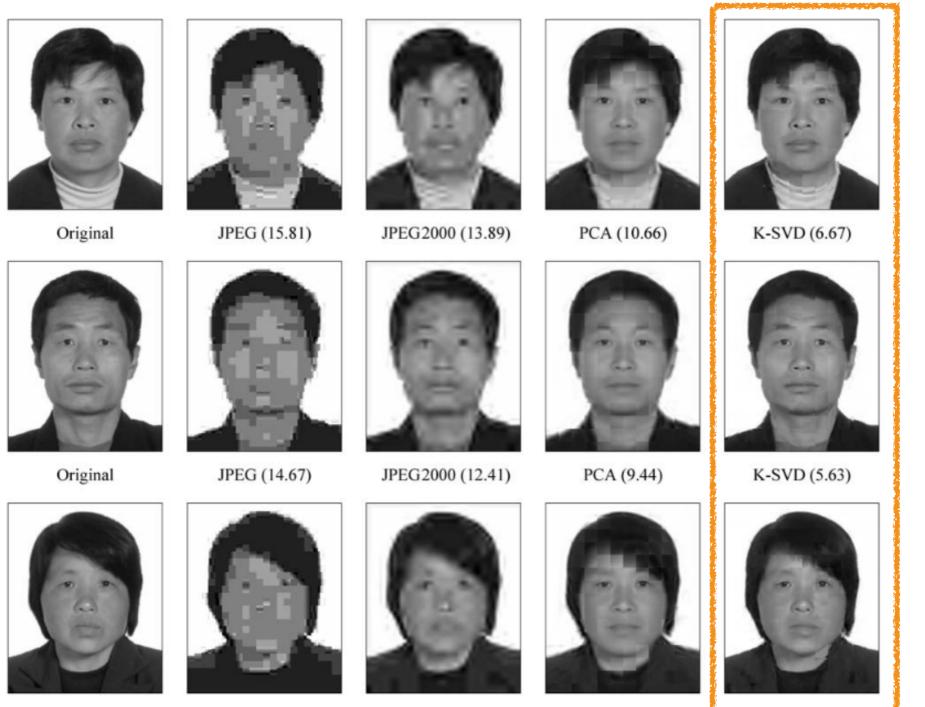
Designed dictionaries: Wavelets, Curvelets, Overcomplete Discrete Cosine Transform, [Haar, 1910], [Zweig, Morlet, Grossman '70s], [Meyer, Mallat, Daubechies, Coifman, Donoho, Candes 80s-today], ...

Data-driven dictionary learning:

[OIshausen and Field, 1997], [Engan et al., 1999], [Aharon et al., 2006], [Roth and Black, 2005], [Lee et al., 2007], [Gribonval and Schnass, 2010], [Starck et al., 2013], [Schnass, 2015],....



Dictionary learning has been successfully used in a number of applications like compression



Original

JPEG (15.3)

JPEG2000 (12.57)

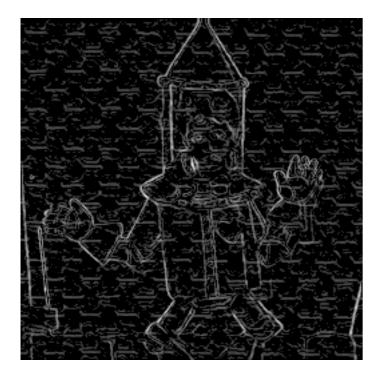
RMSE is shown in brackets

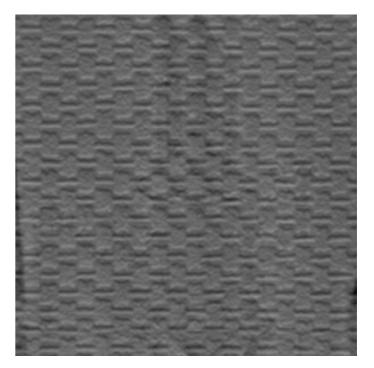
PCA (10.27)

K-SVD (6.45)

[O. Bryt, M. Elad, 2008]

Dictionary learning has been successfully used in a number of applications like edge detection and texture separation





Dictionary learning has been successfully used in a number of applications like denoising

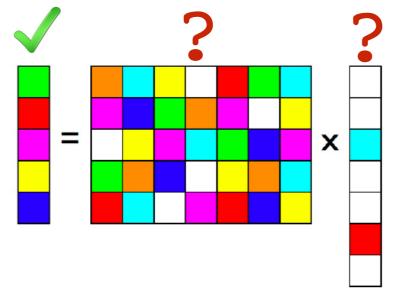
Original Image

Noisy Image (22.1307 dB, σ=20)

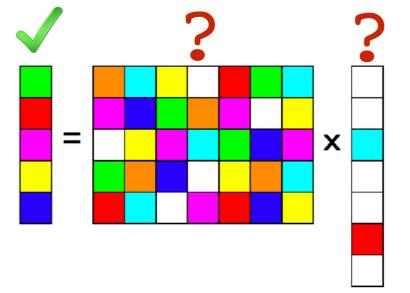
Denoised image (30.83 dB)

[M. Elad, M. Aharon, 2006]

Dictionary learning delivers good results BUT only when a large number of clean high-quality signals is available



Dictionary learning delivers good results BUT only when a large number of clean high-quality signals is available

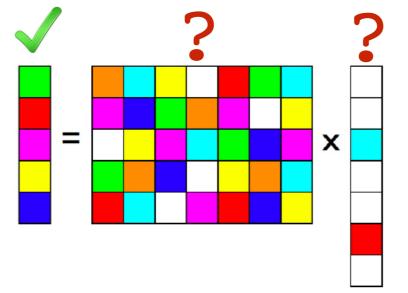


Dictionary learning:

✓ delivers state-of-the-art results for many image/video processing task.
✓ is well adapted to data that admits sparse representation.

- requires a large amount of high-quality clean signals for training.
- are computationally demanding.

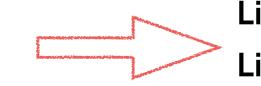
Dictionary learning delivers good results BUT only when a large number of clean high-quality signals is available



Dictionary learning:

✓ delivers state-of-the-art results for many image/video processing task.
✓ is well adapted to data that admits sparse representation.

- requires a large amount of high-quality clean signals for training.
- are computationally demanding.



Limited applicability for high-dimensional data. Limited applicability for real-life sensor data.

We propose a novel algorithm, *Iterative Thresholding and K-residual Means for Masked data (ITKrMM)*, to solve the problem of learning from incomplete or corrupted data.

- We propose a novel algorithm, *Iterative Thresholding and K-residual Means for Masked data (ITKrMM),* to solve the problem of learning from incomplete or corrupted data.
- ITKrMM incorporates a signal corruption model into the dictionary learning phase by introducing the concept of mask.

- We propose a novel algorithm, *Iterative Thresholding and K-residual Means for Masked data (ITKrMM)*, to solve the problem of learning from incomplete or corrupted data.
- ITKrMM incorporates a signal corruption model into the dictionary learning phase by introducing the concept of mask.
- ITKrMM algorithm alternates between sparsely approximating the signals in the current version of the dictionary and updating the dictionary based on the sparse approximations.

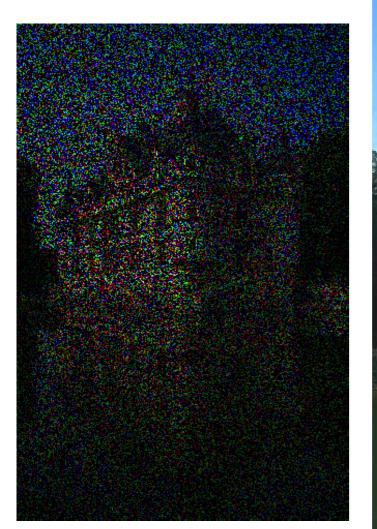
- We propose a novel algorithm, *Iterative Thresholding and K-residual Means for Masked data (ITKrMM)*, to solve the problem of learning from incomplete or corrupted data.
- ITKrMM incorporates a signal corruption model into the dictionary learning phase by introducing the concept of mask.
- ITKrMM algorithm alternates between sparsely approximating the signals in the current version of the dictionary and updating the dictionary based on the sparse approximations.
- ITKrMM algorithm demonstrates significant improvement in terms of computational complexity compared to the state-of-the-art methods.

ITKrMM algorithm has the same reconstruction quality as the state-of-the-art method

Image corrupted with the text

Recovered image with ITKrMM dictionary

ITKrMM algorithm has the same reconstruction quality as the state-of-the-art method



Corrupted image with 70 % missing data

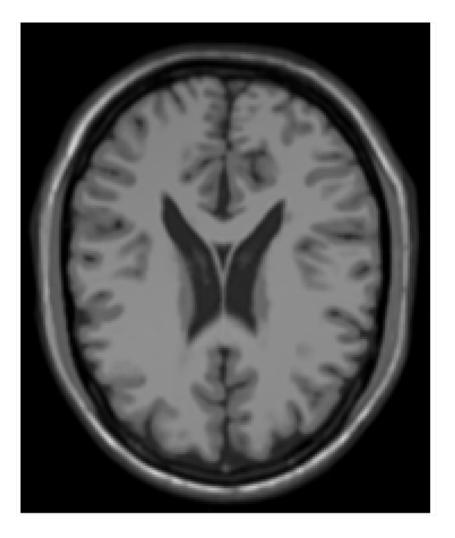
Ground truth

Recovered image with ITKrMM dictionary

Good performance and reasonable complexity of ITKrMM also valid for 3D image inpainting

MRI volume with 80 % missing voxels

MRI volume of size 217×181×181



Recovered image with the ITKrMM dictionary

Synthetic cerebral MRI volumes available from BrainWeb

Good performance and reasonable complexity of ITKrMM also valid for hyperspectral image inpainting

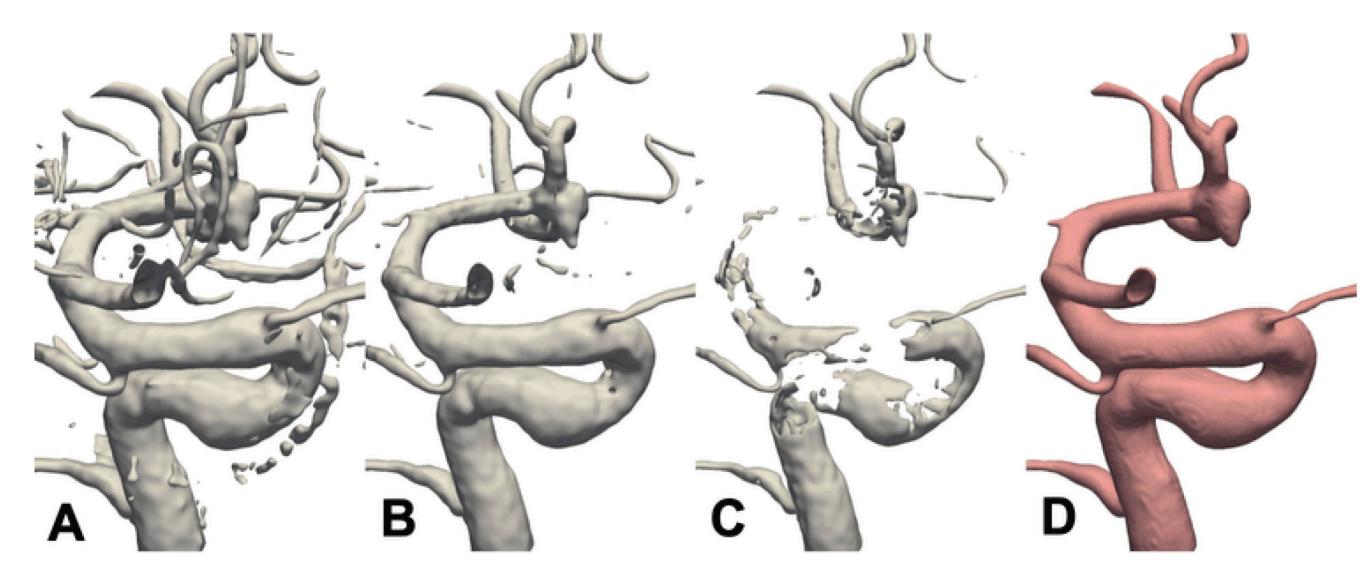
Hyperspectral data with 50 % missing pixels

Hyperspectral data from Mars Observer, 128×128×64

Spatial recovery with the ITKrMM dictionary

Hyperspectral data available from Mars observer

Good performance of ITKrMM for medical image denoising and segmentation



Extracted brain blood vessels from the CT image with manual segmentation (A-C) and automatic ITKrMM-based segmentation (D)

Images from P.M. Florvaag Master Thesis, 2018

Thanks to

Karin Schnass, Uni Innsbruck Jean-Luc Starck, I CosmoStat CEA

Massimo Fornasier, TU Munich

Simula will contribute to the NORA activities with two PhD positions in AI

